Search results for " turbulent flow"

showing 5 items of 5 documents

Reciprocating Flow in a Plane Channel: Comparison of RANS Turbulence Models and Direct Numerical Simulation

2009

Direct Numerical SimulationUnsteady Turbulent FlowRANS Turbulence ModelsCFDHeat TransferSettore ING-IND/19 - Impianti Nucleari
researchProduct

Turbulent Flow Structures For Different Roughness Conditions of Channel Walls: Results of experimental

2012

Open channel flows Turbulent flows walls roughness
researchProduct

Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis

2014

AbstractDeposition and resuspension mechanisms in particle-laden turbulent flows are dominated by the coherent structures arising in the wall region. These turbulent structures, which control the turbulent regeneration cycles, are affected by the roughness of the wall. The particle-laden turbulent flow in a channel bounded by irregular two-dimensional rough surfaces is analysed. The behaviour of dilute dispersions of heavy particles is analysed using direct numerical simulations (DNS) to calculate the three-dimensional turbulent flow and Lagrangian tracking to describe the turbophoretic effect associated with two-phase turbulent flows in a complex wall-bounded domain. Turbophoresis is inves…

PhysicsParticle statisticsTurbulenceMechanical Engineeringmedia_common.quotation_subjectParticle-laden flowsProbability density functionMechanicsCondensed Matter PhysicsTracking (particle physics)Inertiamultiphase and particle-laden flows particle/fluid flows turbulent flowsPhysics::Fluid DynamicsMechanics of MaterialsParticleParticle velocitymedia_commonJournal of Fluid Mechanics
researchProduct

The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows

2008

Wall roughness produces a downward shift of the mean streamwise velocity profile in the log region, known as the roughness function. The dependence of the roughness function on the height and arrangement of roughness elements has been confirmed in several studies where regular rough walls were analysed; less attention has been paid to non-regular rough walls. Here, a numerical analysis of turbulent flows over irregularly shaped rough walls is performed, clearly identifying the importance of a parameter, called the effective slope (ES) of the wall corrugations, in characterizing the geometry of non-smooth irregular walls. The effective slope proves to be one of the fundamental geometric para…

Physicsbusiness.industryTurbulenceMechanical Engineeringturbulencelarge eddy simulationGeometrySurface finishCondensed Matter PhysicsSettore ICAR/01 - Idraulicawall roughness; turbulence; large eddy simulationOpticsRoughness lengthwall roughnessMechanics of MaterialsParasitic dragDragRough-wall turbulent flow LESSurface roughnessRange (statistics)businesswall roughneScaling
researchProduct

Numerical prediction of turbulent flow and heat transfer in helically coiled pipes

2010

Abstract Computational results were obtained for turbulent flow and heat transfer in curved pipes, representative of helically coiled heat exchangers. Following a grid refinement study, grid independent predictions from alternative turbulence models ( k – ɛ , SST k – ω and RSM– ω ) were compared with DNS results and experimental pressure drop and heat transfer data. Using the SST k – ω and RSM– ω models, pressure drop results were in excellent agreement with literature data and the Ito correlation. For heat transfer, the literature is not comparably complete or accurate, but a satisfactory agreement was obtained in the range of available data. Unsatisfactory results, both for pressure drop …

Pressure dropMaterials scienceTurbulenceGeneral EngineeringTurbulence modelingThermodynamicsReynolds stressCondensed Matter PhysicsChurchill–Bernstein equationNusselt numberHeat transferHeat exchangerhelically coiled tubes curved tubes pressure drop heat transfer turbulent flow turbulence modelsSettore ING-IND/19 - Impianti NucleariInternational Journal of Thermal Sciences
researchProduct